Ice−Water Interfacial Free Energy for the TIP4P, TIP4P/2005, TIP4P/ Ice, and mW Models As Obtained from the Mold Integration Technique

نویسندگان

  • Jorge R. Espinosa
  • Carlos Vega
  • Eduardo Sanz
چکیده

The freezing of water is greatly influenced by the ice−water interfacial free energy. Yet, no consistent experimental measures of this thermodynamic parameter can be found. In this work we provide estimates for the ice Ih− water interfacial free energy at the normal melting temperature for different crystal planes (basal, primary prismatic, and secondary prismatic) using some widely used water models: TIP4P, TIP4P/2005, TIP4P/Ice, and mW. To compute the interfacial free energy, we use the mold integration method. It consists in calculating the work needed to induce the formation of a crystal slab in the fluid at coexistence conditions with the aid of a mold of potential energy wells whose structure is that of the crystal plane under study. The basal plane has the lowest interfacial free energy in all models of the TIP4P family. For the mW model we could not resolve differences in interfacial free energy between different orientations. The interfacial free energies averaged over all crystal orientations we obtain are 27.2(8), 28.9(8), 29.8(8), and 34.9(8) mJ/m for the TIP4P, TIP4P/2005, TIP4P/Ice, and mW models, respectively. The averaged interfacial free energy increases with both the melting temperature and melting enthalpy of the model. Moreover, we compute the interfacial free energy for several crystal orientation of ice Ic using the TIP4P/Ice model and obtain within the accuracy of our calculations the same orientationally averaged interfacial free energy as that of ice Ih. Our results are in good agreement with previous estimates of the interfacial free energy based on a classical nucleation theory analysis of simulations of spherical ice seeds embedded in supercooled water.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homogeneous ice nucleation evaluated for several water models.

In this work, we evaluate by means of computer simulations the rate for ice homogeneous nucleation for several water models such as TIP4P, TIP4P/2005,TIP4P/ICE, and mW (following the same procedure as in Sanz et al. [J. Am. Chem. Soc. 135, 15008 (2013)]) in a broad temperature range. We estimate the ice-liquid interfacial free-energy, and conclude that for all water models γ decreases as the te...

متن کامل

On the time required to freeze water.

By using the seeding technique the nucleation rate for the formation of ice at room pressure will be estimated for the TIP4P/ICE model using longer runs and a smaller grid of temperatures than in the previous work. The growth rate of ice will be determined for TIP4P/ICE and for the mW model of water. Although TIP4P/ICE and mW have a similar melting point and melting enthalpy, they differ signif...

متن کامل

Properties of ices at 0 K: a test of water models.

The properties of ices Ih, II, III, V, and VI at zero temperature and pressure are determined by computer simulation for several rigid water models (SPC/E, TIP5P, TIP4P/Ice, and TIP4P/2005). The energies of the different ices at zero temperature and pressure (relative to the ice II energy) are compared to the experimental results of Whalley [J. Chem. Phys. 81, 4087 (1984)]. TIP4P/Ice and TIP4P/...

متن کامل

Computer simulation of two new solid phases of water: Ice XIII and ice XIV.

NpT Monte Carlo simulations have been performed for two recently discovered solid phases of water which have been denoted as ice XIII and ice XIV C. G. Salzmann et al. [Science311, 1758 (2006)]. Several potential models of water were considered, namely, the traditional SPC/E, TIP4P, and TIP5P and the more recent TIP5P-E, TIP4P-Ew, TIP4P/Ice, and TIP4P/2005 models. Significant differences in den...

متن کامل

The melting point of ice Ih for common water models calculated from direct coexistence of the solid-liquid interface.

In this work we present an implementation for the calculation of the melting point of ice I(h) from direct coexistence of the solid-liquid interface. We use molecular dynamics simulations of boxes containing liquid water and ice in contact. The implementation is based on the analysis of the evolution of the total energy along NpT simulations at different temperatures. We report the calculation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016